
I AD-A269 588 ,

I
I

RETRIEVING AND INTEGRATING DATA

I FROM MULTIPLE INFORMATION SOURCES

YIGAL ARENS

CHIN Y. CHEE

CHUN-NAN HSU
CRAIG A. KNOBLOCK

USC/Information Sciences Institute

March 1993

IISI-RR-93-308

I

S.t[11ELEcTE:

I

To appear in the International Journal on Intelligent and Cooperative Information Sys-
tems

93-21774

I 9 /(7 117uIIlIln

SFORM APPRO VED

REPORT DOCUMENTATION PAGE T OMB NO. 070,1

I Publi reporti•ng burden for this collection of informtion :estimted1 toaver&q hu per response, including the like for review"n Insrci , torching ehlg data

Iowce, atlmng ma mdn~nl th daPi•sn copeIng _en vwln =h OOUno Infornatioib. Send commsents regarding% ths 00o oeivtdo any1o2h S Jefaeron DavInsorhayo, n gSuit e Io redu to thts offien dof ashnt:= ad r t

==. GECY 2VSE3 ONY(Laebl) 2.REPORT DATE 3. _REPORT TYPE AND DATES COVEREDI . AGNCUEONYLevban) April 30, 1993 Research Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Retrieving and Integrating Data From Multiple Information Sources F30602-91-C-0081

I s. AUTHOR(S)
Yigal Arens, Chin Y. Chee, Chun-nan Hsu and Craig Knoblock

I 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON

REPORT NUMBER
USC INFORMATION SCIENCES INSTITUTE RR-308
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORINGI Rome Laboratory AGENCY REPORT NUMBER

I 111. SUPPLEMENTARY NOTES
To appear in the International Journal on Intelligent and Cooperative Information Systems

12A. DISTRIBUTION/AVAILABILITY STATEMENT 12B. DISTRIBUTION CODE

UNCLASSIFIED/UNLIMITED

13. ABSTRACT (Maximum 200 words)

With the current explosion of data, retrieving and integrating information from various osurces is a criticalI problem. Work in multidatabase systems has begun to address this problem, but it has primarily focused on
methods for communicating between databases and requires significant effort for each new database added
to the systme. This paper describes a ore general approach that expoits a semantic model of a problemI domain to integrate the information from various information sources. The information sources handled
include both databases and knowledge bases, and other information sources could potentially be incorpo-
rated into the system. This paper describes how the domain and the information sources are modeled,I shows how a query at the domain level is mapped into a set of quiries to individual information sources, and
presents algorithms for automatically improving the efficiency of quries using knowledge about both the
domain and the information sources. This work is implemented in a system called SIMS and has beenI tested in a transportation planning domain using nine Oracle databases and a LOOM knowledge base.
14. SUBJECT TERMS 15. NUMBER OF PAGES

Information server. multidatabases, planning, query, reformullation, knowledge
r e p r e s e n t a i to n , S I M S 1 6 . _P R I C ECO D E

16. PRICE CODE

I 17. SECURITY CLASSIFICTION IS. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACTI rM(W ASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSH 7M4-01-29o-r6o rtandard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-1i

3 298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this Information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.

Block 2. Report Date. Full publication date Denotes public availability or limitations. Cite any

including day, month,a nd year, if available (e.g. 1 availability to the public. Enter additional
limitations or special markings in all capitals (e.g.Jan 88). Must cite at least the year. NOFORN, REL, ITAR). cptl eg

Block 3. Type of Report and Dates Covered. [

State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities.
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete Information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number, and Block 12b. Distribution Code.
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Leave blank.
in parentheses. DOE - Enter DOE distribution categories

Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical

element numbers(s), project number(s), task Reports.
number(s), and work unit number(s). Use the NASA - Leave blank.
following labels: NTIS - Leave blank.

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most

Element Accession No. significant Information contained in the report.

Block 6. Author s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects In the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.Addsss_ _el-eplaatry I
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price
Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.-19. Security Classifications. Self-
performing the repor. explanatory. Enter U.S. Security Classification in

Olock 9. Sponsoring/Monitoring Agency Names(s) accordance with U.S. Security Regulations (i.e.,
-. and Address(es). Self-explanatory UNCLASSIFIED). If form contins classified
Block 10. Sponsoring/Monitoring Agency information, stamp classification on the top and

Report Number. (If known) bottom of the page.

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract This block must
Information not Included elsewhere such as: be completed to assign a limitation to the
Prepared In cooperation with...; Trans. of ...; To be abstract Enter either UL (unlimited) or SAR (same
published in... When a report Is revised, Include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Slndr Fr 26Bak(R•24)I

To appear in the International Journal on Intelligent
and Cooperative Information Systems.

I RETRIEVING AND INTEGRATING DATA. • MULTIPLE
INFORMATION SOURCES*

I YIGAL ARENS
CHIN Y. CHEE

CHUN-NAN HSU
CRAIG A. KNOBLOCK

Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292, U.S.A.

(ARENS, CHEE, CHUNNAN, KNOBLOCKIOISI.EDU

ABSTRACT
With the current explosion of data, retrieving and integrating information
from various sources is a critical problem. Work in multidatabase systems
has begun to address this problem, but it has primarily focused on methods
for communicating between databases and requires significant effort for each
new database added to the system. This paper describes a more general
approach that exploits a semantic model of a problem domain to integrate
the information from various information sources. The information sources
handled include both databases and knowledge bases, and other information
sources (e.g., programs) could potentially be incorporated into the system.
This paper describes how both the domain and the information sources are
modeled, shows how a query at the domain level is mapped into a set of
queries to individual information sources, and presents algorithms for auto-
matically improving the efficiency of queries using knowledge about both the
domain and the information sources. This work is implemented in a system
called SIMS and has been tested in a transportation planning domain using
nine Oracle databases and a Loom knowledge base.

Keywords: Information server, multidatabases, planning, query reformula-
tion, knowledge representation, SIMS

1 Introduction and Related Work

Most tasks performed by users of complex information systems involve interaction

with multiple information sources.1 Examples can be found in the areas of analysis

"T*I% research reported here was supported by Rome Laboratory of the Air Force Systems
Command and the Defense Advanced Research Projects Agency under contract no. F30602-91-C-
0081. Views and conclusions contained in this report are the authors' and should not be interpreted
as representing the official opinion or policy of DARPA, RL, the U.S. Government, or any person
or agency connected with them.

B13y the term information souree we refer to any system from which information can be ob-
tained. SIMS currently deals with Oracle databases and Loom knowledge bases.

I
I

(e.g., of intelligence data or logistics forecasting) and in resource planning and
briefing applications. Retrieval of desired information dispersed among multiple
sources requires general familiarity with their contents and structure, with their
query languages, with their location on existing networks, and more. The user must
break down a given retrieval task into a sequence of actual queries to information
sources, and must handle the temporary storing and possible transformation of l
intermediate results - all this while satisfying constraints on reliability of the results
and the cost of the retrieval process. With a large number of information sources, it
is difficult to find individuals who possess the required knowledge, and automation
becomes a necessity.

SIMS 2 accepts queries in the form of a description of a class of objects about
which information is desired. This description is composed of statements in the
Loom knowledge representation language (Section 1.1.1). The user is not presumed
to know how information is distributed over the data- and knowledge bases to which
SIMS has access - but he/she is assumed to be familiar with the application do-
main, and to use standard terminology to compose the Loom query. The interface I
enables the user to inspect the domain mod-l as an aid to composing queries. SIMS
proceeds to reformulate the user's query as a collection of more elementary state-
ments that refer to data stored in available information sources. SIMS then creates a
plan for retrieving the desired information, establishing the order and content of the
various plan steps/subqueries. Using knowledge about the contents and structure of
information sources, SIMS reformulates the plan to minimize its expected execution
time. The resulting plan is then executed by performing local data manipulation
and/or passing subqueries to the LIM system (Section 1.1.2), which generates the
final translation into database queries in the appropriate language(s). A graphi-
cal user interface enables the user to inspect the plan in its various stages and to I
supervise its execution.

The SIMS project applies a variety of techniques and systems from Artificial
Intelligence to build an intelligent interface to information sources. SIMS builds on
the following ideas:

Knowledge Representation/Modeling, which is used to describe the domain about
which information is stored in the information sources, as well the structure and
contents of the information sources themselves. The domain model is a declarative
description of the objects and activities possible in the application domain as viewed
by a typical user. The model of each information source indicates the data-model
used, query language, network location, size estimates, update frequency, etc., and I
describes the contents of its fields in terms of the domain model. The user formu-
lates queries using terms from the application domain, without needing to know
anything about specific information sources. SIMS' models of different information
sources are completely independent, greatly easing the process of incorporating new
information sources into the system.

Planning/Search, which is used to construct a sequence of queries to individual
information sources that will satisfy the user's query. A planner is used in an initial I
reformulation step that selects the information sources to be used in answering
a query. It is also used to order the queries to the individual information sources,

2Services and Information Management for decision Systems. I
2

I
I

select the location for processing the intermediate data, and determine which queries
can be executed in parallel.

Reformulation/Learning. SIMS considers alternative information sources and
queries to them to retrieve the desired information. This search for more efficient
query formulations is guided by the detailed semantics provided by the application
domain model. Additional knowledge about the contents of the information sources
may be learned from the databases and used to reformulate the queries.

An initial prototype incorporating many features of the SIMS approach has
been built and applied to the domain of transportation planning - organizing the
movement of personnel and materiel from one geographic location to another using
available transportation facilities and vehicles [2]. An earlier prototype was applied
to information needed for daily Naval briefings given in Hawaii about the status
of the Pacific Fleet [1]. The system currently has access to nine Oracle databases
and a Loom knowledge base with information about ships, ports, locations, relevant
activities, etc. SIMS is controlled via a graphical user interface. It is written in
Common Lisp and uses CLIM for its graphics.

There has been some work on the problem of accessing information distributed
over multiple sources both in the Al-oriented database community and in the more
traditional database community. Work in heterogeneous distributed databases in-
cludes the MULTIBASE, MERMAID, NDMS, IISS, IMDAS, ADDS, PRECI* and
MRDSM systems. A survey and comparison of these can be found in [24]. Of
these systems, only the first four attempt to support total integration of all infor-
mation sources in the sense that SIMS provides. SIMS is distinguished from work
in this community in that a complete semantic model of the application domain is
created in a state-of-the-art knowledge representation language with powerful rea-
soning facilities. The model provides a collection of terms with which to describe
the contents of (i.e., to create semantic models of) available information sources
- and these include knowledge bases in addition to databases. Furthermore, a
sophisticated planning mechanism is used at run-time in order to determine the po-
tentially very complex relationship between the collection of information requested
by the user and the data available from the various sources. In contrast to pre-
vious work, the domain model in SIMS is neither specific to a particular group of
information sources, nor is there necessarily a direct mapping from the concepts in
the model to the objects in the information sources. Our approach thus provides a
much more flexible and easily extensible interface to a possibly changing collection
of information sources.

The Al-oriented database community has done work on various aspects of using
a knowledge base to integrate a variety of information sources. The Carnot project
[9] integrates heterogeneous databases using a set of articulation axioms that de-
scribe how to map between SQL queries and domain concepts. Carnot uses the Cyc
knowledge base 116] to build the articulation axioms, but after the axioms.are built _

the domain model is no longer used or needed. In contrast, the domain model in
SIMS is an integral part of the system, and allows SIMS to both combine information F-

stored in the knowledge base and to reformulate queries. Illarramendi et al. [3, 13]
present an approach to automatically integrating knowledge-base models from indi- 0 d
vidual relational database schemas. In SIMS, the integration of the database models 00
is not automated, although the translation of the individual database schemas into L10

3Die ibutim ___

hVwalability Co..e

Avail and, i

!L H :.7 ;Zr Dist SPsoia1

fI

i
I

knowledge-base models is automated by the LIM system, which is used by SIMS.
Elements of the approach described in that work can be applied to further au- I
tomating the process of database modeling in SIMS. Finally, Papazoglou et al. [22]
present a framework for intelligent information systems where, like SIMS, an explicit
knowledge model is an integral part of an intelligent information agent.

Some additional related research has been performed by those working on se- I
mantic and object-oriented data models, e.g., [8, 12, 26]. Since they are interested
in constructing a single DBMS, however, they take an almost diametrically opposed
view of the problem from that of SIMS. While SIMS attempts to preserve its inde- I
pendence from the data models of the constituent data- and knowledge-bases, using

a planner to bridge this gap at query time, they attempt to closely integrale the
given data model into their DBMS. 3

The remainder of this paper is structured as follows. The rest of this section
is devoted to overviews, first of the technological infrastructure used by SIMS,
and then of the operation of the SIMS system itself. Section 2 follows with a
description of the modeling that provides SIMS with the knowledge needed to plan
data retrieval. A full description of SIMS' planning and reformulation components
is provided in Sections 3, 4, and 5. SIMS' user-interface is described in Section 6.
The paper ends with a brief summary and directions for future work, Section 7. I
1.1 Technological Infrastructure

This subsection is provided for readers who may not be familiar with the systems
underlying SIMS. A general understanding of Loom, LIM, and planners like Prodigy
is assumed in the rest of this paper. 3
I.I.1 Loom

Loom serves as the knowledge representation system SIMS uses to describe the
domain model and the contents of the information sources, as well as serving as an
information source in its own right. It provides both a language and an environment
for constructing intelligent applications. Loom combines features of both frame-
based and semantic network languages, and provides some reasoning facilities. As
a knowledge representation language it is a descendent of the KL-ONE (4] system.

The heart of Loom is a powerful knowledge representation system, which is
used to provide deductive support for the declarative portion of the Loom language. I
Declarative knowledge in Loom .consists of definitions, rules, facts, and default rules.
A deductive engine called a classifier utilizes forward-chaining, semantic unification
and. object-oriented truth maintenance technologies in order to compile the declar-
ative knowledge into a network designed to efficiently support on-line deductive
query processing. For a detailed description of Loom see [17, 18].

To illustrate both Loom and the form of SIMS' queries, consider Figure 1, which i
contains a simple semantic query to SIMS. This query requests the value of the depth
of the San Diego port. The three subclauses of the query specify, respectively, that
the variable ?port describes a member of the model class port, that the relation
port.name holds between the value of ?port and the string SAN-DIEGO, and that I
the relation port.depth holds between the value of ?port and the value of the

4I

I

(db-retrieve (?depth)
(:and (port ?port)

(port.na-e ?port "SAN-DIEGO")
(port.depth ?port ?depth)))

Figure 1: Example SIMS/Loom Query

variable ?depth. The semantic query specifies that the value of the variable ?depth
be returned. A query to SIMS need not necessarily correspond to a single database
query, since there may not exist one database that contains all the information
requested.

1.1.2 LIM

In Loom the members of a class (e.g., the possible values of the variable ?port
in the expression in Figure 1) are instances in the knowledge base. In the case of
large-sized realistic domains it is preferable not to define all objects of the domain
as knowledge base instances. Instead, databases provide more efficient structures
for organizing large numbers of such objects, and DBMSs are more efficient than
Al languages for manipulating them.

The Loom Interface Module (LIM) [191 is being developed by researchers at Para-
max Systems Corp. to mediate between Loom and databases. LIM reads an external
database's schema and uses it to build a Loom representation of the database. The
Loom user can then treat classes whose instances are stored in a database as though
they contained "real" Loom instances. Given a Loom query for information in that
class, LIM automatically generates a query in the appropriate database query lan-
guage to the database that contains the information, and returns the results as
though they were Loom instances. However, LIM focuses primarily on the issues
involved in mapping a semantic query to a single database. After SIMS has planned
a query and formed subqueries, each grounded in a single database, it hands the
subqueries to LIM for the actual data retrieval. SIMS handles direct queries to the
Loom knowledge base on its own.

1.1.3 Prodigy

The two problems of selecting information sources and ordering queries can be
easily cast as planning problems. SIMS uses Prodigy [6, 21], a means-ends analysis
planner, to solve both these problems. Prodigy has an expressive operator and
control language and has been linked to Loom, so that it can use the Loom domain
model as its model of the world. SIMS formulates the selection of information
sources and the ordering of queries as planning problems and hands them off to
Prodigy.

A problem is specified in Prodigy by giving the system a set of operators that
define the legal operations on a problem and an initial state description that defines
the current state of the world. The system is then given a goal, which in this case
is the query to be answered, and Prodigy generates a sequence of operators that
transforms the initial state into a state in which the goal is satisfied.

5

U
I

User's Information Access Query-Plan 1
Query Soreleto Planning Reformulation Excto

Sp I
Doataas Models

Figure 2: SIMS Overview Diagram.

Prodigy is used for solving the planning problems in SIMS for two main rea- i
sons. First, it provides an expressive language for both defining the problem and
constructing a set of rules to control the search. Second, it provides a natural frame-
work for planning the operations and monitoring the execution of those operations.
In the case of failures, the failure points are easily identified and the system can
return to the planner to select an alternative plan for retrieving the data.

1.2 Overview of SIMS

SIMS addresses several problems that arise when one tries to provide a user famil-
iar only with the general domain with access to a system composed of numerous
separate data- and knowledge-bases.

Specifically, SIMS deals with the following: 3
* Determining which information sources contain the data relevant to the

knowledge-base classes used in formulating a given query.

* For those classes mentioned in the query which appear to have no match- i
ing information source, determining if any knowledge encoded in the domain
model (such as relationship to other classes) permits reformulation in a way
that will enable suitable information sources to be identified.

6 Creating a plan, a sequence of subqueries and other forms of data-
manipulation that when executed will yield the desired information. $

* Using knowledge about databases to optimize the plan.

* In general, providing a uniform way to describe information sources to the
system, so that data in them is accessible.

6 0 I
I

(retrieve (?name)
(:and (rail-port ?port)

(port.refrig ?port ?refrig)
(> ?refrig 0)
(port.geocode ?port ?geocode)
(port.name ?port ?name)
(geoloc ?geoloc)
(geoloc.country.name ?geoloc "Germany")
(geoloc.geocode ?geoloc ?geocode)))

Figure 3: Example SIMS Query.

A visual representation of the components of SIMS is provided in Figure 2.3
An initial Loom query of the kind SIMS handles is shown in Figure 3. The first

clause, (rail.port ?port), is a concept expression that constrains the variable
?port to a set of port objects in the knowledge base. Th,. Loom class rail.port
(standing for sea ports with rail facilities) need not necessarily correspond to the
contents of a specific field in some single information source. If it does not, the
planner will have to find some combination of subqueries that will obtain all nec-
essary objects. This case is discussed further later. The second clause is a relation
expression that states that the port.refrig relation holds between fillers of the
variables ?reirig and ?port. This clause will bring about the retrieval of possible
fillers of ?refrig - refrigeration facilities in a relevant port. The third clause is a
constraint: a ">" relation on the number of refrigeration facilities, requiring it to
be a positive integer. The entire query requests the names of all ports with rail ft-
cilities and refrigeration facilities whose geographic code designation indicates that
they are in Germany.

A fragment of the model describing some of the hierarchy of concepts relevant to
this query is presented in Figure 5. In this figure, the circles denote concepts in the
knowledge base, the upward arrows indicate is-a links, and the other arrows indicate
relations between concepts. So, for example, the Port concept has two subconcepts,
Sea-Port and Air-Port, and Sea-Port has a subconcept Rail-Port, seaports with a
railway capability. Shaded concepts represent those that can be retrieved directly
from some database.

If the information about rail ports and geographic locations were stored directly
in the Loom knowledge base, then Loom could be used directly to answer this
query. But, as the figure indicates, that is note the case. SIMS uses Loom to
semantically model a domain about which data is stored in multiple information
sources, and the information required to answer this query will be retrieved from
the appropriate sources, with the help of LIM where necessary. Thus, if all the
referenced information were stored in one database, this query could be passed
directly to LIM as is. But that is not the case either.

Data pertaining to this query is spread over two databases - one containing
information about ports and the other containing information about geographic
locations. The system is handed the query shown in Figure 3 and it must first de-

3 Work on the links back from the Execution component to Information Source Selection and
Access Planning will not be discussed in this paper.

7

I
I

termine which information sources to access. Then it formulates a set of subqueries
that can be executed directly by either LIM or Loom to derive the desired result. I
SIMS can use LIM to return intermediate results, which can then be processed
further in Loom. As we will see, the execution of the example query will require
three subqueries. One to each of the databases and one to combine the intermediate
results obtained from them. The processes described in overview here are discussed
in more depth in the remaining sections of the paper.

The very first step in processing a query is to determine where the requested 3
data resides. For instance, inspecting the model fragment in Figure 5 reveals that
rail.port does not have a directly corresponding database (a shaded concept).
However, the model relation port.rail can be used to distinguish it from other
ports. Specifically, it can identify the desired ports from among those in sea.port,
which does have a corresponding database. This and other reformulations of this
nature are described further in Section 3.

The next step in processing the query is to produce a plan to implement the
required retrieval. By this we mean tbh . SIMS must produce a plan consisting
of data-retrieval and data-manipulation specifications, with an associated partial
ordering of the specified actions. The data-retrieval steps of the plan must be
grounded in specific information sources, i.e., all data one step requests must be
contained in a single information source. Any data-manipulation steps of the plan
are performed using the Loom reasoning facilities. The plan produced takes the I
form of a lattice of plan steps.

The steps in a plan are partially ordered based on the structure of the query.
This ordering is determined by the fact that some steps make use of data that is 1
obtained by other steps, and thus must logically be considered after them. For
example, a plan step may compare two items of data according to some measure. If
the data are obtained from two different information sources, then the comparison
must come lator '',an the retrievals of the data items.

Next, the plan produced as above is inspected and, when appropriate, data-
retrieval steps that are grounded in the same information source are grouped -

eventually their execution will result in a single query. We therefore call this process
subquery formation. The result of this grouping process is a new graph in which
each node ultimately corresponds either to a query to some information source, or
to internal manipulation by SIMS of data so acquired. The processes involved in
subquery formation is described in Section 4. I

After a plan for the query has been obtained, the system reformulates the query
plan into a less expensive yet semantically equivalent plan. The reformulation
is based on logical inference from content knowledge about each of the queried
databases. The cost reduction from the reformulated plan is due to the reduction
in the amount of the intermediate data and the refinement of each subquery. This
reformulation process is described in Section 5.

First, however, we discuss our approach to modeling.

83 I
I

2 Domain and Information Source Models

SIMS must reason about data and other knowledge stored in a variety of locations
and formats. It is imperative that SIMS have available detailed descriptions of the
various information sources to which it has access. This is not merely an artifact of
the SIMS approach - no systcn: can retrieve requested information if it does not
have knowledge about where the information in question may be stored and how to
go about accessing it.

In SIMS a model of each information sources is created to describe it to the
system. In addition, a domain model is constructed to describe objects and actions
that are of significance in the performance of tasks in the application domain. 4 The
domain model's collection of terms forms the "vocabulary" used to characterize the
contents of an information sources.

It is important to note that the models of different information sources are
independent of each other. This greatly simplifies the task of modeling, and at the
same time enables new components to be added to SIMS without the need for any
recompilation process. The planner simply makes use of the new information as
appropriate.

2.1 Modeling Information Sources

For each information source, SIMS' model must include every fact that can influence
decisions concerning when and whether to utilize it.

" In order to decide whether a query to LIM is necessary or whether process-
ing can be performed locally, the model specifies if the source is a database
or a Loom knowledge base (the two types of information sources currently
supported);

" In order to decide whether to expend effort reformulating plans and whether
to be concerned with the cost of transmitting intermediate data, the model
describes the size of databases and tables, and their location;

" In order to help further with decisions concerning reformulation, the model
defines key columns in dhe database, if such exist; and, finally,

" In order to enable SIMS to determine in which information source desired
information resides, the model describes the content of the information source.

In fact, most of the modeling effort done for SIMS goes to describing the content
of databases. These models are used by both LIM and SIMS, for their own respective
purposes (cf. [19] for LIM's work on database modeling). Simply put, the model
of a database must describe precisely what type of information is stored in it.
To do so we choose a key column (or columns) in each table and create a Loom
class corresponding to it - the class from which items in that column are drawn.
Every other column in the table .s viewed as corre.3ponding to a Loom relation -

4 1n fact, all the knowledge described here is stored by SIMS in a single model defined in a
uniform way. It is thus only for purposes of exposition that we describe different parts of the
model as "separate" models.

9

U
I

AFSC Database
SEAPORT Table port

Dp - ac 0CC CaRN W. . . .- I&T /"

/ -

opor

11 , 0 ON&

4ft\rnmk_ no I

- --a- bkas a abegc

Figure 4: A Model of a Datab-se Table Embedded in the Domain Model.I

one describing the relationship between the key item and the one in that column.3
Figures 4 provides a simple illustration of content modeling.

2.2 Modeling the Domain 3
SIMS deals with a single "application domain", i.e., with organizing the retrieval of
information relevant to some coherent collection of tasks. Currently, the application
domain we have selected is the military transportation planning domain - tasks 1
involving the movement of personnel and materiel from one location to another
using aircraft, ships, trucks, etc.

SIMS' model of the application domain includes a hierarchical terminological
knowledge base with nodes representing all objects, actions, and states possible in
the domain. In addition, it includes indications of all relationships possible between
nodes in the model. For example, there is a node in the model representing the class
of ports and a node representing the class of geographic location codes. There is
a relation specified between ports and geoloc codes with a notation indicating

that each of the former has precisely one of the latter.
The Loom knowledge representation language is used to describe SIMS' domain I

model. Statements in Loom are used to express more elaborate relationships among
model entities, such as that rail-ports are sea-ports which have a rail terminal as
well (cf. Figure 5).5

The entities included in the domain model are not meant to correspond to any
objects described in any particular database. The domain model is intended to be a
description of the application domain from the point of view of someone who needs
to perform real-world tasks in that domain and/or to obtain information about
"it. However, the domain model is used, effectively, as the language with which to
describe the contents of a databasc to SIMS. This is done by including relations -

5We have chosen simple examples for use in this paper. Loom supports far more powerful I
statements. For a full description see 117, 18).

10

I

I
I

hierarchical (is-a) or others - to precisely describe every aspect of the contents of
the database in terms of the domain model (cf. Section 2.1). In order to submit a
query to SIMS, the user composes a Loom statement, using terms and relations in
the domain model to describe the precise class of objects that are of interest. If the
user happens to be familiar with particular databases and their representation, those
concepts and relations may be used as well. But such knowledge is not required.
SIMS is designed precisely to allow users to query it without such specific knowledge
of the data's structure and distribution.

The task of accurately relating a database (and other information source) model
must be engaged in for every database and knowledge base that SIMS is to be
capable of utilizing. SIMS includes a graphical interface that simplifies this process
(Section 6).

The modeling work that is a prerequisite for SIMS to be able to access in-
formation sources is a substantial effort, the importance of which cannot be over-
emphasized. The extent to which SIMS can find information and the accuracy of its
retrievals are completely dependent on it. The scalability of the modeling process
in SIMS is discussed next.

2.3 Scalability and Expandability

SIMS' dependence on models of the domain and the information sources it utilizes
requires that the question of its scalability be addressed. Separate issues arise when
considering the application domain model and the information resource models.

2.3.1 Expanding the Application Domain Model

A considerable effort must be expended to model the application domain before any
use of SIMS is possible. Although this task's extent should not be minimized, it is
a relatively tractable one no different than that engaged in in many other areas of
artificial intelligence. In fact, it has more clearly defined limits, since full utility is
possible from the moment that enough of the model has been built to cover data
objects described in desired databases. Any model building beyond that point only
increases the expressivity of the query language and adds to the user's convenience,
but it still provides access to the same data.

It is reasonable to anticipate that the domain model will have to be incremen-
tally enlarged to accommodate new data sources as they are added to the system.
However, since SIMS is designed to handle one domain at a time, it can safely be
assumed that this modeling effort will gradually reach closure.

U 2.3.2 Adding Information Source Models

Additional modeling will have to be engaged in for every new information source
added to SIMS. While this need will remain constant as the system grows, the SIMS
approach greatly limits the required effort compared to what it potentially might
be. Obviously, no approach to this problem can avoid modeling information sources,
since without a complete description of the content of a database or knowledge base
it is simply impossible to intelligently decide whether or not to attempt to retrieve
desired information from it. However, SIMS allows one to model a new information

I

I
I

eCod

Figure 5: Fragment of Domain Model I
source independently of any that are already incorporated into the system. There
is no need to try to anticipate interactions or overlaps between different information
sources, to decide how joins over databases will be performed, etc., since all such
decisions are made at run time by the SIMS planner.

To further simplify any modeling that does have to be performed, the SIMS
project includes an ongoing effort to develop modeling aids, among them a graphical
Loom knowledge base builder (see Section 6).

3 Selecting Information Sources U
The first step in answering a query expressed in the terms of the domain model is
to select the appropriate information sources. This is done by mapping from the
concepts in the domain model to the concepts in the database models that cor- I
respond directly to database information. If the user requests information about
ports and there is a database concept that contains ports, then the mapping is
straightforward. However, in many cases there will not be a direct mapping. In-

stead, the original domain-model query must be reformulated in terms of concepts
that correspond to database concepts.

Consider the fragment of the knowledge base shown in Figure 5, which covers
the knowledge relevant to the example query in Figure 3. The concepts Sea-Port,
Air.Port, and Geoloc have subconcepts shown in by the shaded circles that corre-

spond to concepts whose instances can be retrieved directly from some database.
Thus, the AFSC database contains information about both seaports and airports
and the PACF database contains information about only seaports. Thus, if the user
asks for seaports, then it must be translated into one of the database concepts -
AFSC.SeaPort or PACF.SeaPort. If the user asks for rail-ports, then it must first
be translated into a request for sea-ports by augmenting the original query with a
constraint that each port must have a railroad capability.

In addition to retrieving data from the databases, data can also be stored in and
retrieved from the Loom knowledge base. This knowledge base is simply treated I
as another information source. However, the Loom KB has the added advantage

123

I
I

I
I

that information from database queries can be cached in it and the model can be
updated to indicate what information has been stored in Loom.

In this section, we describe the set of problem reformulation operations6 that are
implemented in SIMS and the reformulation process used to transform a user's query
into one that can be used to retrieve data. We also describe how this reformulation
mechanism supports the catching and retrieval of data in Loom.

3.1 Reformulation Operations

In order to select the information sources for answering a query, SIMS applies a
set of reformulation operators to transform the domain-level concepts into concepts
that can be retrieved directly from databases. The system uses four operators:
Select-Database, Generalize-Concept, Specialize-Concept, and Partition-Concept.
These reformulation operators are described next.

3 3.1.1 Select Database

The Select-Database reformulation operator maps a domain-level concept directly
to a database-level concept. In many cases this will simply be a direct mapping
from a concept such as Sea-Port to a concept that corresponds to the seaports in
a particular database. There may be multiple databases that contain the same
information, in which case the domain-level concept can be reformulated into any
one of the database concepts. In Figure 5, Sea-Port can be transformed into either
AFSC-SeaPort or PACF.SeaPort. The following example shows how a simple
query would be reformulated using AFSC.Sea.Port. In general, the choice is made
so as to minimize the number of queries to different databases. 7

Input Query:
(retrieve (?name)

(:and (sea.port ?port)

(port.name ?port ?nane)))

3 Reformulated Query
(retrieve (?name)

(:and (af sc.seaport ?port)
(afsc-port.name ?port ?name)))

1 3.1.2 Gent.alize Concept

The Generalize-Concept operator uses knowledge about the relationship between
a class and a superclass to reformulate a requested concept in terms of a more
general concept. In order to preserve the semantics of the original request, one or
more additional constraints may need to be added to the query in order to avoid

'These are to be distinguished from query-plan reformulation operations, which are described

in Section 5.7
Currently we assume the databases contain consistent information, so the choice of databases

only effects the efficiency of the query and not the accuracy.

* 13

I
I

1
I

retrieving extraneous data. For example, a request for rail ports can be replaced
with a request for seaports with the additional constraint that the seaports have I
a rail capability (i.e. (port.rail ?port "Y")). This is illustrated in the following
example.

Input Query:
(retrieve (?name)

(:and (rail.port ?port) U
(port .name ?port ?name)))

Reformulated Query
(retrieve (?name)

(:and (sea-port ?port)
(port.name ?port ?name)
(port.rail ?port "Y")))

3.1.3 Specialize Concept 1
The Specialize-Concept reformulation operator attempts to replace a given concept
with a more specific concept. This is done by checking the constraints on the query U
to see if there is an appropriate specialization of the requested concept that would
satisfy it. Identifying a specialization of a concept is implemented by building a set
of Loom expressions representing each concept and then using the Loom classifier
to find any specializations of the concept expression.

For example, consider the hierarchy fragment shown in Figure 5 again. Given
the query shown below, which requests the ports with a depth greater than 25, the
Loom classifier uses the fact that only seaports have a relation that corresponds to
port.depth. Therefore, only seaports could possible satisfy the query, and in the
original request ports can be replaced with seaports. There are several databases
that correspond to seaports, so the requested information can now be retrieved. I

Input Query:
(retrieve (?name)

(:and (port ?port)
(port.name ?port ?nane)
(port.depth ?port ?depth)
(> ?depth 25)))

Reformulated Query
(retrieve (?nane)

(:and (sea-port ?port)
(port.name ?port ?nane)
(port.depth ?port ?depth)
(> ?depth 25)))

14

I
I

I

3.1.4 Partition Concept

The Partition-Concept operator uses knowledge about set coverings (a set of con-
cepts that include all of the instances of another concept) to specialize a concept.
This information is used to replace a requested concept with a set of concepts that
cover it. For example, given the knowledge that the Port is covered by Sea.Port
and Air-Port, a request for ports can be satisfied by retrieving and combining these
two subconcepts. This is illustrated in the example below.

Input Query:

(retrieve (?name)
(:and (port ?port)

(port.name ?port ?name)))

Reformulated Query
(retrieve (?name)

(:or (:and (sea-port ?port)
(port.name ?port ?name))

C:and (air-port ?port)
(port .name ?port ?name))))

I 3.2 The Reformulation Process

Reformulation is performed by treating the reformulation operators as a set of
planning operators and then using a planning system to search for a reformulation of
the given set of concepts. The initial clauses of the query are divided into references
to individual concepts and their associated constraints. The planner then searches
for a way to map each of these concepts with their associated constraints into
database concepts.

For example, consider the query shown below. It is first decomposed into two
separate expressions - one about ports and the other about geolocs. Then the refor-
mulation operators are used to find mappings to database concepts. Any remaining
clauses (e.g., comparisums across concepts) are dealt with when a plan for accessing
the data is generated.

K (retrieve (name)
(:and (rail-port ?port)

(port.refrig ?port ?refrig)
(> ?refrig 0)
(port.geocode ?port ?geocode)

(port.name ?port ?name)
(geoloc ?geoloc)
(geoloc.country.name ?geoloc "Germany")
(geoloc.geocode ?geoloc ?geocode)))

Using the reformulation operators described previously, the planner determines
that the Geoloc concept expression can be mapped directly to a database and the
Rail-Port concept expression needs to be reformulated. It can be reformulated into

15

I
I

I
I

a Sea-Port concept expression, as described in Section 3.1.2, by adding a constraint.
The resulting plan for reformulating the initial query is shown below. I

generalize-concept rail-port (:and sea-port (filled-by port. rail "Y")
select-database sea-port alsc.sea.port
select-database geoloc geo.geoloc

The final step is to take this plan and execute it. This is a straightforward
process of applying the transformations in the query plan in the order listed. The I
resulting query is as follows.

(retrieve (?name) 3
(:and (afsc-sea-port ?port)

(afsc.port.rail ?port "Y")
(afsc.port.refrig ?port ?refrig)
(> ?refrig 0)
(afsc-port.geocode ?port ?geocode)
(alsc.port.name ?port ?name)
(geo.geoloc ?geoloc)
(geo-geoloc. country-name ?geoloc "Germany")
(geo~geoloc.geocode ?geoloc ?geocode)))

3.3 Caching Retrieved Data

Data that is required frequently or is very expensive to retrieve can be cached in the
Loom knowledge base and retrieved directly from Loom. An elegant feature of using
Loom to model the domain is that caching the data fits nicely into this framework.
The data.is currently brought into Loom to perform the local processing, so caching
is simply a matter of retaining the data and recording what data has been retrieved. I

To cache retrieved data into Loom requires formulating a description of the data.
This can be extracted from the initial query since queries are expressed in Loom
in the first place. The description defines a new subconcept and it is placed in the
appropriate place in the concept hierarchy. The data then become instances of this
concept and can be accessed by retrieving all the instances of it.

Once the data is stored, it can be retrieved using the specialization operator
that was described above. When the user poses the same query, the system can I
reformulate that query into the newly stored one and when the stored query is used,
the cached data is retrieved directly from Loom.

4 Access Planning

The planning process described in this section finds an ordering of the database
accesses and data comparisons by analyzing the dependency structure of the con- I
straints on the query. It then generalizes the plan to remove any unnecessary order-
ing constraints in order to maximize the plan's potential parallelism. The complete
database access plan is converted back into a partially ordered set of grounded I
subqueries that can be banded to LIM or executed directly in Loom. The first

16I

I
I

I
I

(and (concept afsc.sea.port ?port)
(relation port.refrig ?port ?refrig)
(relation port.geocode ?port ?geocode)
(relation port.name ?port ?name)))
(comparison > ?refrig 0)
(concept geoloc ?geoloc)
(relation geoloc .country.name ?geoloc "Germany")

(relation geoloc.geocode ?geoloc ?geocode))

Figure 6: Goal Statement for the Planner

3 subsection below describes how the initial access plan is generated, and the second
subsection describes how the plan is converted into the appropriate subqueries.

I 4.1 Generating an Access Plan

Since some of the databases are quite large, there can be a significant difference in
efficiency between different possible plans for a query. Therefore, we would like to
find subqueries that can be implemented as efficiently as possible. To do this the
planner must take into account the cost of accessing the different databases, the
cost of retrieving intermediate results, and the cost of combining these intermediate
results to produce the final results. In addition, since the databases are distributed
over different machines or even different sites, we would like to take advantage of
potential parallelism and generate subqueries that can be issued concurrently.

A central task of the planner is to determine the ordering of the various accesses
to databases. In the course of executing this task it also selects the databases from
which to extract information. The ordering is determined by analyzing which steps
in the plan for the query are generating values for variables and which steps are
filtering the possible values. If one step depends on information produced in another
step, then they must be done in the correct order. The Prodigy system, described
in Section 1.1.3 is used to form the subqueries and order them. The problem is cast
as a set of Prodigy operators, where the original semantic query constitutes the goal
that is to be achieved by the planner.

In a straightforward process, the reformulated example query described in the
last section is mapped by Prodigy into the goal for the planner shown in Figure 6.I. (Note that the language being used is no longer Loom.) Each subclause of the
query is annotated with additional information indicating whether it is a concept,
relation, or comparison aubclause.

The set of operators used by the planner is shown in Figure 7. The first operator,
retrieve-concept simply maps a concept to the database used to retrieve the
desired information. The next three operators, generate-values, filter-values,
and compare-values, determine the constraints on the order of the accesses to
the individual databases. The remaining operators, begin-query and end-query,
delimit the operations performed on an individual database.

As an illustration, the retrieve-concept operator is shown in Figure 8. This
operator specifies a set of preconditions that must be true in order to apply the
operator. In this case the preconditions are that information about the concept is

I 17

I
I

I
I

Operator Purpose

Retrieve-Concept Retrieves information from a particular database.

Generate-Values Uses a given relation to generate values for a given variable.

Filter-Values Uses a given relation to filter values for a given variable.

Compare-Values Performs a comparison between two sets of values. 3
Begin-Query Indicates the beginning of a query to one of the databases.

End-Query Indicates the end of a query.

Figure 7: Operators for Planning a Query

(retrieve-concept
(parans (<pred> <object> <db>))
(preconds (and (database-concpt <pred> <db>) U

(open-db <db>)))

(effects ((add (concpt <pred> <object>))
(add (available <object> <db>))))) 3

Figure 8: Operator for Retrieving a Concept from a Database

directly available from some database and that this database has been opened. If
the database has not been opened for retrieval, then the planner would create the
subgoal of doing so and insert a begin-query operation. The retrieve-concept I
operator has two effects. The first specifies that the information for this concept
is now available, and the second specifies in which database the information is
available.

The system generates a plan to achieve the goal in Figure 6 by selecting operators
to achieve each of the goal conditions. If the preconditions of a selected operator
do not hold, then the system must recursively achieve each of the preconditions.
Once the system has achieved all of the goal conditions, it will have a plan for
retrieving the information to satisfy the initial query. The resulting plan specifies
which databases are to be used to satisfy the query as well as any constraints on
the order in which the information is retrieved.

Prodigy initially produces a totally ordered plan for retrieving information. This
plan is then converted into a partially ordered set of plan steps free of unnecessary
ordering constraints. Each of an operator's preconditions in the database access
plan explicitly states the conditions on which that operator depends. We use the
-algorithm of Veloso [271 to convert the totally ordered plan into a partially ordered
plan from the definitions of the operators. This algorithm is polynomial in the I
length of the plan. The resulting partially ordered plan is shown in Figure 9.

18 I

I

,I
I

I 19

U

Ioafscpr.r~ pr Y) ?geocode ?geocode2)
(<f-orfn-tn 0p- ?-g)

((go-600 %6010lc)i

Igeo.geoloc.counay.name ?geolc *Gez'manyj
a'(S. -- 1--eoi.ecode ?geolo ? ;)

Figure 10: Final SIMS Plan for Example Query

4.2 Subquery Formation

The second step in the query planning process is to formulate the actual subqueries
which will be passed on to LIM and eventually translated into database queries. i
Since LIM takes care of such details, we do not need to worry about the access
languages of the individual databases, their locations, etc. Instead, we only need
to formulate Loom queries that refer to information in one database. LIM and the
DBMSs for the individual databases are responsible for selecting the appropriate
access paths and locally optimizing the query within that database (we discuss
global optimization in the next section). U

The subqueries are formed by grouping together steps of the original plan.
This is a relatively straightforward process that is aided by the presence of
begin-query/end-query steps in the plan graph. The grouping is done by combin-
ing nodes in the plan partial order, to produce a final partial order on the subqueries.
The subqueries for the example problem are shown in Figure 10. It shows that to
implement the original query, three operations are necessary. The first two are ac-
cesses to separate databases that can be done in parallel. The third operation is a I
comparison in Loom on the results from these two subqueries. This last step cannot

begin until the other two are complete.

5 Query-Plan Reformulation

Constructing a plan for retrieving information is only part of the problem. An
important consideration in mapping the initial query into a set of subqueries is
the total time that it will take to execute all of the subqueries. One approach
to reducing this cost is to search for reformulations of the query access plan that
reduce it. Database management systems (DBMSs) often perform syntactic query
reformulation [14]. We leave that task to the respective DBMS then, and focus
instead on more global semantic query reformulation [7, 15]. The idea is to transform
the query resulting from the planning process into a semantically equivalent one that
can be executed more efficiently.

20

I
I

Consider the planned query illustrated in Figure 10. The final step in this
query, comparing two geographic location codes ?geocode and ?geocode2, could
be quite costly since the cost of comparison is proportional to the square of the
potentially large number of intermediate data items. Moreover, the comparison is
performed in Loom, which is not as highly optimized as state-of-the-art DBMSs.
There are a variety of ways in which this query could be reformulated to reduce or
eliminate the cost of this last step. For example, knowledge about the contents in the
databases could be used to augment the earlier subqueries, so that less intermediate
information would be generated. Or, knowledge about the domain could be used to
transform a subquery into an equivalent one that can be more efficiently executed.

Our approach to this problem differs from other related work on semantic query
reformulation in an important respect that we do not rely on explicit heuristics of
the database implementation to guide search for reformulations in the combinato-

rially large space of the potential reformulated subqueries. Instead, our algorithm
considers all possible reformulations by firing all applicable rules and collecting can-
didate constraints in an inferred set. And then we select the most efficient set of
the constraints from the inferred set to form the reformulated subqueries. This
algorithm is not only more flexible and efficient, but the results of the rule firing
turn out to be the useful information for extending subquery reformulation to the
reformulation of the entire query plan. Most of other related work only reformulates
single database queries.

Below we describe the principle behind the semantic reformulation, what knowl-
edge is used for performing the reformulation, and the reformulation algorithms for
subqueries and query plans.

5.1 Reformulation of Subqueries

The subquery reformulation problem is analogous to the problem of semantic query
optimization for single database queries in previous work. The goal of query refor-
mulation is to use reformulation to search for the least expensive query from the
space of semantically equivalent queries to the original one. Two queries are defined
to be semantically equivalent[25] if they return identical answers given the same con-
tents of the database. The alternative definition of semantic equivalence[15] requires
that the queries return identical answers given any contents of the database, but
this definition would limit us to using only semantic integrity constraints which are
often not available. The use of the less restrictive definition of semantic integrity
requires that the system updates the learned knowledge as the databases change.

The reformulation from one query to another is by logical inference us-
ing database abstractions, the abstracted knowledge of the contents of relevant
databases. The database abstractions describe the databases in terms of -the set
of closed formulas of first-order logic. These formulas describe the database in the
sens! that they are true with regard to all instances in the database. We define two
classes of formulas: range information, which are propositions that assert the value
range of database attributes; and rules, which are implications with an arbitrary
number of range propositions on the antecedent side and one range proposition on
the consequent side. Figure 11 shows a small set of the database abstractions. In
all formulas the variables are implicitly universally quantified.

21

I
I

Range Information:
1: (geo-eoloc. country.nameE ("France" "Taiwan" "Japan" "Italy" "Germany"))
2: (afsc.port.geocode E ("BSRL" "HITS" "FGTV" "VITY" "•PKZ" "XJCS"))

.3: (0 < afsc-port.refrig-storage < 1000)

Rules:
1: (geo.geoloc.country..nae - "Germany") • (geo0geoloc.country.code - "1FPG")
2: (geojeoloc.country-code - "FRG") * (geo.geoloc.country-name = "Germany")
3: (geo.geoloc.country-code - "FRG"):::=(47.15 < geo.geoloc.latitude < 54.74) I
4: (alsc.port.rail , "Y") = (afsc-port.geocode E ("BSRL. "HITS" "FGTV"))
5:(6.42 < geo.geoloc.longitude < 15.00) A

(47.15 < geogeoloc.latitude < 54.74)
* (geo-geoloc.country-code a"PFRG")

Figure 11: Example of Database Abstractions

SUBQI:I
(retrieve (?geoloc ?geocode2)

(:and (geo.geoloc?geoloc)
(geo-geoloc.geocode ?geoloc ?geocode2)
(geo.geoloc. countrynaame ?geoloc "Germany")))

SVBQ2:
(retrieve (?geoloc ?geocode2)

(:and (geogoeoloc?geoloc)
(geo-geoloc.geocode ?geoloc ?geocode2)

(geo.geoloc.country-code ?geoloc "FRG")))
SUBQ3:
(retrieve (?geoloc ?geocode2)

(:and (geo.geoloc?geoloc)
(geogeoloc.geocode ?geoloc ?geocode2)
(geo-geoloc.country-code ?geoloc "FRG") I
(geo-geoloc. latitude ?geoloc ?latitude)
(?latitude >- 47.15) (?latitude (< 54.74)))

Figure 12: Equivalent Subqueries I
The first two rules in Figure 11 state that for all instances, the value of its

attribute country name is "Germany" if and only if the value of its attribute coun- I
try code is "FPG". With these two rules, we can reformulate the subquery SUBQi
in Figure 12 to the equivalent subquery SUBQ2 by replacing the constraint on
geo.geoloc. country.-nae with the constraint on geo.geoloc. country-code. We
can inversely reformulate SUBQ2 to SUBQ1 with the same rules. Given a subquery
Q, let C 1,..., C& be the set of range and interaction constraints in Q, the following
reformulation operators return a semantically equivalent query: I

* Range Refinement: A range-information proposition states that the values
of an attribute A are within some range Rd. If a range constraint of A in Q 1
constrains the values of A in some range 14, then we can refine this range
constraint by replacing the constraining range R, with n4 fl Rd.

22

I
I

SUBQ-REFORMULATION(Subquery, DB-Knowledge, Cost-Model)
1.refine range constraints, if Subquery refuted, return Nil;
2.for all applicable rules A - B in DB-Knowledge:

if Subquery refuted, return NIL;
else add B to Inferred-Set, add (B,A) to Dependency-List;

3.for all B in Inferred-Set in the order of their cost:
if B is not indexed and 3 (B,A) in Dependency-List

delete B from Subquery, delete (B,A) from Dependency-List;
replace all (CB) in dependency list with (C,A);

4.return (reformulated Subquery, Inferred-Set)
END.

Figure 13: Subquery Reformulation Algorithm

"* Constraint Addition: Given a rule A -- B, if a subset of constraints in Q
implies A, then we can add constraint B to Q.

"* Constraint Deletion: Given a rule A --+ B, if a subset of constraints in Q
implies A and B implies C,, then we can delete Ci from Q.

"* Subquery Refutation: Given a rule A --. B, if a subset of constraints in
Q implies A, and in the query there exists a range constraint Ci such that B
implies -'Ci, then we can assert that Q will return NIL.

Replacing constraints is treated as a combination of addition and deletion. Note
that these reformulation operators do not always lead to more efficient versions of
the subquery. Knowledge about the access cost of attributes is required to guide
the search. For example, suppose the only database index is placed on the at-
tribute geo.geoloc.country.uame. In that case reformulating SUBQ2 to SUBQ1
will reduce the cost from O(n) to O(k), where n is the size of the database and k
is the amount of data retrieved. However, if either geo.geoloc. country-name and
geo-geoloc. country.code are not indexed, then we will prefer the lower cost short
string attribute geo.geoloc. country.code. In this case, reformulating SUBQ1 to
SUBQ2 becomes more reasonable. Figure 13 shows our subquery reformulation
algorithm. We explain the algorithm below by showing how SUBQ-REFORMIULATION
reformulates the subquery SUBQ1, the lower query in the query plan in Figure 10.

There are three input arguments to the algorithm: the subquery to be reformu-
lated, the database abstractions, and the cost model. The first step in the algo-
rithm is to refine the range constraints. The only range constraint in SUBQ1 is on
geo-geoloc. countryname, and its constrained value Germany is within the range
of possible values (see the first formula of range information), so this constraint
remains unchanged.

The second step is to match all applicable rules from the set of database
abstractions using the reformulation operators defined above. The first rule
in Figure 11 is matched and fired for SUBQ1 and we get an additional
constraint (geo.geoloc.country.code ?geoloc "FRG"), which is added to the
Inferred-Set. Then the second and third rules are matched because of the ad-
ditional constraint on country code. The constraints geo.geoloc. latitude and
geo-geoloc, country-name are added to the Inferred-Set.

23

i
I

The third step is to select the constraints in the Inferred-Set to delete from
the subquery. The selection is based on the constraint's relative estimated execu-
tion cost which is computed by the type of the constraints (range constraint, or
interaction constraint), the type of the attribute's values (integer, string, and their
length), and whether they are indexed. The attribute geo.geoloc.country.name [
is deleted because its long string type is the most expensive. The next most
expensive constraint is the one on attribute geogeoloc.country,-ods. How-
ever, it should be preserved because the cause of its deletability (i.e., the con-
straint on geo.geoloc, country.name) was just deleted. Finally, the constraint on
geo.geoloc. latitude is kept because it is an indCexed_ attribute that will improve
the efficiency of the subquery. The algorithm returns the reformulated subquery
SUBQ3 as shown in Figure 12, as well as the Inferred-Set, which will be used for
reformulating the succeeding subqueries in the query plan.

The worst case complexity of SUBQ-REFORNMUTION is O(R 2MN), where M
is the maximum length of the antecedent of the rules, N is the greatest number
of constraints in the partially reformulated query, that is, the number of original
constraints plus the number of added constraints before final selection, R is the
size of DB-Knowledge. In the average case, the complexity is much smaller than
this worst case estimation. Because R2 > MN, R is the dominating factor in the
complexity and should be kept within a manageable size. This complexity analysis
assumes that the system matches database abstractions by linear search. Therefore,
a very large set of database abstractions could make the reformulation costly. To I
avoid this problem, we plan to adopt a more sophisticated rule match algorithm,
such as the RETE algorithm[1O], that will improve the algorithm's efficiency. I
5.2 Reformulation of Query Plans

We can reformulate every subquery in the query plan with the subquery reformu-
lation algorithm and improve their efficiency. However, the most expensive aspect
of the multidatabase query is often processing intermediate data. In the example
query plan in Figure 10, the constraint on the final subqueries involves the variables
?geocode and ?geocode2 that are bound in the preceding subqueries. If we can re- I
formulate these preceding subqueries so that they retrieve only those data instances
possibly satisfying the constraint (= ?geocode ?geocode4) in the final subquery,
the intermediate data will be reduced. This requires the query plan reformulation
algorithm to be able to propagate the constraints along the data flow paths in the
query plan. The query plan reformulation algorithm defined in Figure 14 achieves
this by updating the database abstractions and rearranging constraint.s We explain
the algorithm below using the query plan in Figure 10. I

The algorithm takes three input arguments: the query plan the database
abstractions, and the cost model. This algorithm reformulate. each subquery
in the partial order (i.e., the data flow order) specified in the plan using
SUBQ-REFORNULATIOI. In addition, the database abstractions are updated with the
Inf err"d-Sot returned from SUBQ-REFORMULATION to propagate the constraints to
later subqueries. In this example, the second formula of the initial range information
is replaced by (afac.-port. geocod. E ("BSRL" "BITS" "FGTV")), the consequent
condition of the fourth rule. The algorithm uses this updated range information to

24I

I
I

I
I

QPLAN-REFORIMULATION (Plan, DB-Knowledge, Cost-Model)
1.KB *- DB-Knowledge;
2.for all subqueries S in the order specified in Plan:

(S IInferred-Set) *- SUBQ-REFORNULATIOI(S,KB,Cost-Nodel);
if S' refuted, return Nil;
else update KB with Inferred-Set; update Plan with S';

3.for all subqueries S whose semantics are changed:
SUBQ-REFORNUIATION(S, DB-Knowledge, Cost-Model);

4.return reformulated Plan
END.

Figure 14: Query Plan Reformulation Algorithm

I
(afscsea..pons ?port)
(afsc-portSal ?Port -Y")
(afscports.refrig ?poin ?refrig)
(< 0 ?refrig)
aftc-pors.geocode ?port ?geocode)
(aftc~oms.name ?port ?name)

quyp (= ?plocoa ?ad2)

I (geo.geoloc ?geoloc)(geo..geoloc.country-oode ?geoloc -FRG")
(geo-gooloc.geocode ?geoloc ?geocode2)

(go.eloc.latitde ?geoloc ?latitude)
(47.1-F.= ?latide <= 54.74)
(member ?geode2 (-BSRL" "HNTS' "MTW"))

Figure 15: Reformulated SIMS Plan for Example Query

I reformulate the final subquery and reduces the possible values from six to three.
In addition, the constraint (afsc..port .rail ?port "Y") in the upper subquery is
propagated along the data flow path to its succeeding subquery.

Now that the updated range information for ?geocode is available, the subquery
reformulation algorithm can infer from the constraint (= ?geocode ?geocode2) a
new constraint (member ?geocode2 ("BSRL" "HITS.. "FGTW')). In our example,
the variable is bound by (geo-geoloc. geocode ?geoloc ?geocode2) in the lower
subquery in Figure 10. The algorithm will insert the new constraint on ?geocode2
in that subquery. In this way, the constraints (afsc.port.rail ?port "Y") and
(= ?geocode ?geocode2) are propagated back along the data flow path to the
lower subquery. This process of new constraint insertion is referred to as constraint
rearrangement. The final reformulated query plan is shown in Figure 15.

This query plan is more efficient than and returns the same answer as the original
one. In our example, the lower subquery is more efficient because of the new con-
straint on the indexed attribute geoogeoloc. latitude (by SUBQ-RtFO1NULATIOI).
The intermediate data items are reduced because of the new constraint on the at-
tribute geo.geoloc. geocode. The logical rationale of this new constraint is derived
from the constraints in the other two subqueries: (afsc-port.rail ?port "Y")
and (z ?geocode ?geocode2), and the fourth rule in the database abstractions.

25I
I

I

query 1 1 1 2 1 3 1 4 .1 5 16 1 7 1 8 1 9 1 10 I
plsnning time sec 10.5 1 0.3 0.6 .1 1 1.1 0.7 0.7 1 0.5 1 0.5 1 0.8
reformulation time 0.1 1 0.1 1 0.0 1 0.5 1 0.1 1 0.0 0.0 0.1 0.1 0.3
rules fired (times) 37 18 11 1261 63 1 8 17 15 19 71
query exec. time wfo 0.3 8.2 0.6 12.3 11.3 2.0 251.01401.8255.8[258.8

ue exec. time w/R* 0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2]
total elapeed time w oR 0.8 8.5 1.2 14.4 12.4 2[7 251.7 402.3 256.3 259.6]
total eap time w 0.9 1.9 0.6 13.9 12.3 0.7 1.0 208.1 103.5 196.3

intermediate data w/oR I - 145 4 1 810 1 956 808 1 810
interditedata W/R I" " I 1451 35 1 0 1 28 12 331 320 1 607 1
aw/oR = Without reformulation.

bw/R = With reformulation.

Table 1: Experimental Results

The complexity of QPLAN-R2EFOPU.MLATION is O(SR2M N), where S is the number
of subqueries in the query plan, and R 2MN is the cost of SUBQ-REFORMJATION. In
actual queries, S is relatively small, so the dominating factor is still the cost of the
subquery reformulation R2 MN, in which the size of the database abstractions R is
the most important factor, as shown in section 5.1. Thus, with a manageable size
of the database abstractions, our algorithms are efficient enough to be neglected in
the total cost of the multidatabase retrieval.

The earliest work in query reformulation was referred to. ar semantic query op-
timization and was applied to the single database query processing domain in a
system called QUIST[15]. In contrast with syntactic query optimization, which has
been widely studied in the database community, QUIST uses the rules of semantic
integrity constraint of the database as background knowledge to reformulate the
given query. However, QUIST and the following work[25, 7] use heuristics to select I
the reformulation operators and rules to reformulate the query in a hill-climbing
manner. Our reformulation algorithm does not require heuristic control and is thus
more flexible. Moreover, our algorithm utilizes the database abstractions to the
greatest possible extent, while hill-climbing only searches for the local optimum.

5.3 Experimental Results of Reformulation

Table I provides statistical data concerning the preliminary experimental results of
the query plan reformulation algorithm. In this experiment, the SIMS system is
connected with two remote Oracle databases. One of the databases consists of 16 I
tables, 56,078 instances, the other database consists of 14 tables, 5,728 instances.
The queries used were selected from the set of SQL queries constructed by the
original users of the databases. The first three queries are single database queries,
while the others are multidatabase queries. This initial results indicate that our
algorithm can reduce the total cost of the retrieval substantially. In most multi-
database queries, the amount of intermediate data is reduced significantly. The
overheads of reformulation is included in the total execution time and is relatively
small compared to the cost of executing most queries.

The system used 267 database abstraction rules in this experiment. These rules
were prepared by compiling the databases. The compiling procedure summarizes I
the range of each relation of the database by extracting the minimum and maximum

26

I
I

* mas

3rbv Q~4sw a (7p~l4f d~p0, %vrdh 101000 LoM P~~p GeWs Piu, @WSW EinC S.OWU SOW, GaphmoWE
(.E(4uirw~. 78W?u)

(d,.h... %Wi cd , I m .pp-naw-qtarougn . = icaa 05A " *a p -W-)e
(d eaj~sediftabsaI,7m 1C IS700.*~~W "Non70

(siscl".A 70400, bat rbealha r with 13-32 seter deep with 700 ft d.sm
(decPNIMCh"A-dok "s i 1-midth")

(aftc-s.J-u dmd WipmI 'ustltfllal barb*, Witb 4 bulase (140 acres). 10-3S fast
0 Id 7630 IP04 deepWith laget ~9*1e restricted to SW0 ft.-)

Figure 16: Sample SIMS Interface Screen

values for numerical relations, or enumerating the possible values for string type re-
lations. If the number of possible values exceeds a threshold, this range information
is discarded. The rules were prepared by a semi-automatic learning algorithm sim-
ilar to the KID3[23]. This algorithm takes a user input condition A, and learns aI ~set of rules of the form A -~ B from the database. The algorithm retrieves the data
that satisfy the condition A, then compiles the data for the conclusions B.

We are now developing an autorarstic learning algorithm that is driven by ex-
ample queries. We plan to use inductive learning[5, 11, 20] to identify the costlyI aspects of the example subqueries, propose candidate rules to learn, and then refine
the candidate rules to the desired operationality. Previous work that automatically
derives the content knowledge is proposed by Siegel[25]. Our approach differs from

theirs in that it is driven by the need for reformulation in the example instead of
by a fixed set of heuristics, and it is flexible with regard to various database imuple-
mentations. This is necessary in our case, since the databases integrated by. SIMS
are usually heterogeneous.

8 The SIMS Interface

I Our intention is that the user view SIMS as a black box that allows the user to
query multiple sources of information as if they were one single source. Given

* 27

i
I

this scenario, an important issue is the ease with which the user can pose queries
to the system and receive an answer. Since the exact terms used in a model by I
the developer will often differ from those which a user may be familiar with, it is
very important that the developer's model be accessible to the user. We have thus
stressed the importance uf providing an easy to use interface for posing queries, one
that allows the user convenient access to the model and help in construction of the
query.

At the same time it is important that the model be constructed accurately by
the developer. The model defines the application domain ontology, for both the I
user and SIMS. Not only will the model builder need to be able to build a good
model of the domain, but he needs to be able to connect terms in the domain model
with the corresponding terms in the database model. In order to build a model I
containing hundreds, possibly thousands of concepts, it is essential that the model
builder have tools to view the models. The model builder also needs tools to help
connect models fragments.

A common need for both users and model builders is a good way of viewing the
model. Given that SIMS models are Loom models, a subsumption-based hierarchy
of concepts, the logical visual representation to use is a graph. But a subsumption
hierarchy only shows part of the definition of a model, the is-a relations, to show I
how a subconcept differs from its superconcept, it is usually necessary to show its
roles. Hence our graph shows not only the concepts but the roles of concepts and
their ranges.

SIMS does not dictate a single mode of interaction. We believe that the full range
of underlying user interface management modalities should be made available to the
user. Commands can be issued by mouse gestures applied to the desired objects,
through a menu, or by keyboard commands. The user interface management system
used by SIMS is CLIM 1.1, which is a high level presentation-based user interface
system. .

6.1 The Query Interface

SIMS is accessed by the user through the query interface. Central to the ability to
pose a query is knowledge of the terms in which the domain is defined. I

The SIMS query interface will provide the user aid in the following manner:

* A forms based query input facility.

* Access to the models via a graph of the domain and database models.

* The ability to specify terms of the query by clicking on nodes in the graph.

e Intelligent defaulting - automatic filling in of appropriate variable names for
a sub-query. i

6.2 The Model Building Interface

The domain model defines the ontology of the domain, i.e., all the terms and re-
lations that one can use to query the various information sources. It also defines

28

I
I

I
the expressiveness of the domain, as well as how powerfully SIMS can be in refor-
mulating the queries. A domain model for a realistic application can easily contain
hundreds of concepts and relations, and depending on the complexity of the appli-
cation, can get out of hand very fast, especially if created using a text editor. At the
same time, many concepts are likely to be very similar, being no more than slightly
modified copies of already existing subconcepts of some concepts and hence tedious
to enter. To ease the model building process, we provide the following tools:

"* Two editors:

- a form-based editor that is knowledgeable about the syntax of Loom
terms and allowable inputs.

- a text based editor for direct manual entry/modification of definitions.

* Interactive gesture-based editing, nodes can be modified, added or deleted by
clicking the mouse on the relevant node.

"" Graph navigation aids - panning, node hiding/unhiding and node centering.

7 Conclusions

I This paper describes a system for efficiently accessing and integrating information
from multiple information sources (e.g., databases and knowledge bases). The var-
ious information sources are integrated using the Loom knowledge representation
language. The system requires a model of the application domain and a model of
the contents of each of the information sources. Then, given a query, the system
generates and executes a plan for accessing the appropriate information sources.
Before executing a query, the system first reformulates the individual subqueries to
minimize the cost and the amount of intermediate data that is processed. Then the
subqueries are executed, exploiting any parallelism in the plan.

SIMS currently integrates information from data stored in nine Oracle databases
and information stored in a Loom knowledge base. The system uses the Loom Inter-
face Manager (LIM) to retrieve data from the Oracle databases and then processes
all the data in Loom. The plan for selecting and accessing the various information
sources is generated using the Prodigy planning system. The resulting plan is refor-
mulated using a set of special purpose algorithms for semantic query optimization
over multiple database queries.

I" Acknowledgments

Thanks to Manuela Veloso for providing us with her code for generating partial
orders. Thanks also to the LIM project for providing us with the databases and the
database models used for our work, as well many sample queries.

References

[1] Yigal Arens. Services and information management for decision support. In
AISIG-90: Proceedings of the Annual AI S•lstems in Government Conference,
George Washington University, Washington, DC, 1990.

29

[2] Yigal Arens and Craig A. Knoblock. Planning and reformulating queries for
semantically-modeled multidabase systems. In Proceedings of the First Inter-
national Conference on Information and Knowledge Management, Baltimore,
MD, 1992.

[3] J.M. Blanco, A. Ilarramendi, and A. Gofii. Using a terminological system to
integrate relational databases. Facultad de Informatica, Universidad del Pais
Vasco, Apdo 649, San Sebastiin, Spain, 1992.

[4] R.J. Brachman and J.G. Schmolze. An overview of the KL-ONE knowledge 3
representation system. Cognitive Science, 9(2):171-216, 1985.

[5] Yandong Cai, Nick Cercone, and Jiawei Han. Learning in relational databases:
An attribute-oriented approach. Computational Intelligence, 7(3):119-132, I
1991.

[6] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton. PRODIGY: An
integrated architecture for planning and learning. In Kurt VanLehn, editor,
Architectures for Intelligence, pages 241-278. Lawrence Erlbaum;,Hillsdale, NJ,
1991.

[7] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach
to semantic query optimization. ACM Transactions on Database Systems,
15(2):162-207, 1990. I

[8] Arvola Chan, Sy Danberg, Stephen Fox, Wen-Te K. Lin, Anil Nori, and Daniel
Ries. Storage and access sturctures to support a semantic data model. In
Proceedings of the 8th International Conference on Very Large Data Bases,
pages 122-130, Very Large Database Endowment, Saratoga, CA, 1982.

[9] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integra-
tion using a large knowledge base in carnot. IEEE Computer, pages 55-62,
December 1991.

(10] C.L. Forgy. RETE: A fast algorithm for the many pattern/many object pattern
matching problem. Artificial Intelligence, pages 17-37, 1982.

[11] David Haussler. Quantifying inductive bias: Al learning algorithms and
Valiant's learning framework. Artificial Intelligence, 36:177-221, 1988.

[12] R. Hull and R. King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):201-260, 1987.

[13] A. Illarramendi, J.M. Blanco, and A. Goiii. One step to intefrate data and
knowledge bases. Facultad de Informatica, Universidad del Pais Vasco, Apdo
649, San Sebastian, Spain, 1992.

[14] M. Jarke and J. Koch. Query optimization in database systems. ACM Coin-
puter Surveys, 16:111-152, 1984.

"[15] Jonathan Jay King. Query Optimization by Semantic Reasoning. PhD thesis,
Stanford University, Department of Computer Science, 1981.

30

I
I

I
I

[16] D. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Repre-
sentation and Inference in the Cyc Project. Addison-Wesley, Reading, MA,
1990.

[17] R. MacGregor. A deductive pattern matcher. In Proceedings of AAAI-88, The
National Conference on Artificial Intelligence, St. Paul, MN, 1988.

[18] R. MacGregor. The evolving technology of classification-based knowledge rep-
resentation systems. In John Sowa, editor, Principles of Semantic Networks:
Explorations in the Representation of Knowledge. Morgan Kaufmann, 1990.

[19] Donald P. McKay, Timothy W. Finin, and Anthony O'Hare. The intelligent
database interface: Integrating Al and database systems. In AAAI-90: Pro-
ceedings of The Eighth National Conference on Artificial Intelligence, 1990.

[20) Ryszard S. Michalski. A theory and methodology of inductive learning. In
Machine Learning: An Artificial Intelligence Approach, volume I, pages 83-
134. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1983.

[211 Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R. Kuokka,
Oren Etzioni, and Yolanda Gil. Explanation-based learning: A problem solving
perspective. Artificial Intelligence, 40(1-3):63-118, 1989.

I [22] Mike P. Papazoglou. An organizational framework for cooperating intelligent
information systems. International Journal of Intelligent and Cooperative In-
formation Systems, 1(1):169-202, 1992.

[23] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In
G. Piatetsky-Shapiro, editor, Knowledge Discovery in Databases, pages 229-
248. MIT Press, 1991.

[24] M.P. Reddy, B.E. Prasad, and P.G. Reddy. Query processing in heterogeneous
distributed database management systems. In Amar Gupta, editor, Integration
of Information Systems: Bridging Heterogeneous Databases, pages 264-277.
IEEE Press, NY, 1989.

[25] Michael D. Siegel. Automatic rule derivation for semantic query optimization.
In Larry Kerschberg, editor, Proceedings of the Second International Confer-
ence on Expert Database Systems, pages 371-385. George Mason Foundation,
Fairfax, VA, 1988.

I [26] Shalom Tsur and Carlo Zaniolo. An implementation of gem - supporting a
semantic data model on a relational back-end. In Proceedings of the ACM
SIGMOD International Conference on the Management of Data, pages 286-
295, ACM, New York, 1984.

[27] Manuela M. Veloso. Nonlinear problem solving using intelligent casual-

commitment. Technical Report CMU-CS-89-210, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 1989.

[31

